Abstract

Regression techniques were used to determine the effects of several biotic and abiotic variables on the migration rates of juvenile spring chinook salmon and steelhead in the Columbia and Snake rivers. Comparisons of the effects of river flow and smoltification, assessed using gill Na{sup +}-K{sup +} ATPase activity, were of primary interest. Day of the year, water temperature, change in flow, condition factor, and fork length were also considered as independent variables. Groups of fish were sampled to assess smoltification 2-3 times per week during the spring outmigrations during 1989-1992. These groups were assumed to be representative of other fish which were PIT-tagged and released as a part of the Smolt Monitoring Program in the Columbia Basin. River flow, gill ATPase activity, condition factor, water temperature, and change in flow were significant variables in regressions predicting the time for juvenile spring chinook salmon to travel between specific points (travel time), whereas river flow was the only significant contributor to models describing travel times of steelhead. Predicted travel times of wild steelhead were shorter than those of hatchery steelhead. River flow was the only variable common to all regression equations. Based on the characteristic, changes in river flow would be the most logical means to decrease travel times of both juvenile spring chinook salmon and steelhead in the Columbia and Snake rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.