Abstract

Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level-dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow-related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra-high-field fMRI.

Highlights

  • Cerebral blood flow (CBF) is a key hemodynamic readout coupled to neuronal dynamics and viability in normal and diseased brain states [1]

  • A 2D phase contrast (PC)-MRI slice is aligned perpendicular to the capillary tubing (Fig 1A and 1B) and provides a voxel-specific measurement of the flow velocity through 2 tubes with the upward flow and 2 tubes with the downward flow, as well as a control tube

  • We observe a monotonic and near linear relation between the velocity measured by PC-MRI and the true velocity: Vmeas = (0.67 ± 0.01) Vpump + (0.02 ± 0.11) mm/s at echo time (TE) = 5.0 ms (Fig 1C)

Read more

Summary

Introduction

Cerebral blood flow (CBF) is a key hemodynamic readout coupled to neuronal dynamics and viability in normal and diseased brain states [1]. Changes in CBF may be monitored directly within individual blood vessels through the use of optical-based particle tracking techniques [2]. A variety of imaging methods have been developed to measure CBF across multiple spatial scales, from capillary beds up through brain-wide vascular networks in animal brains. These include in vivo multiphoton microscopy [3], optical coherence tomography [4], optoacoustic imaging [5], and laser doppler and speckle imaging [6,7].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call