Abstract
Shorebirds depend on staging sites in the Gulf of Mexico that are frequently subject to pollution by oil and its toxic constituents, polycyclic aromatic hydrocarbons (PAHs). It was hypothesized that PAH contamination lowers staging site quality for migratory shorebirds, with consequences for fueling and departure timing. Sediment total PAH concentrations were measured at six staging sites along the Texas and Louisiana Gulf Coast. Sites in Louisiana were expected to have higher total PAH concentrations as they were more heavily impacted by the Deepwater Horizon oil spill. From 2015 to 2017, 165 Sanderling ( Calidris alba) and 55 Red knots ( C. canutus) were captured at these same sites during their northward migration (late April to mid May). Mass, body morphometrics, and plasma metabolite measurements were taken to determine fuel loads and fueling rates, and a subset of birds (120 Sanderling and 39 Red knots) received a coded radio tag to determine departure dates using the Motus telemetry array. Compared to Texas sites, sediment in Louisiana had higher total PAH concentrations, dominated by heavier 6 ring indeno[1,2,3- cd]pyrene (48%). Plasma metabolite profiles suggested that fueling rates for Sanderling, but not Red knots, tended to be lower in Louisiana, and both species departed later than the study average from Louisiana. However, multiple factors, including migration patterns, food supply, and other contaminants, also likely influenced fueling and departures. PAH contamination in the Gulf of Mexico remains an ongoing issue that may be impacting the staging site quality and migration timing of long-distance migratory birds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.