Abstract

The removal of chlorinated organic hydrocarbons (COHs) -DNAPLs was studied in permeability-contrasted sandboxes with an egg-box shaped substratum. Aqueous solutions were compared to viscous shear-thinning fluids (xanthan solution and foam). Interfacial and viscous effects were compared by increasing the capillary number of injected fluids. Non-spatially targeted DNAPL recovery (NSTR) where the driving force was the injection pressure, was compared to spatially targeted DNAPL recovery (STR) where a pumping system allowed the controlled flow. A historical contamination made of a complex mixture of COHs and hexachlorobutadiene (HCBD) as a model were used. NSTR results showed that DNAPL recovery with non-viscous liquids did not exceed 40%. The best results were obtained for xanthan solutions with surfactant ~ 1.3 ×CMC for which pure phase recovery amounted to 88% and 93% for HCBD and for the historical DNAPL, respectively. The STR strategy showed similar recovery yields, whereas xanthan concentrations were 10-times lower. Mass balances on DNAPL showed that at most, 0.15% of COHs was dissolved in the aqueous effluents. NZVI (1 g.l-1) were delivered in xanthan in view of the chemical degradation of residual COHs and showed a 65% transmission through the low permeability soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call