Abstract

The semantic similarity between two interacting proteins can be estimated by combining the similarity scores of the GO terms associated with the proteins. Greater number of similar GO annotations between two proteins indicates greater interaction affinity. Existing semantic similarity measures make use of the GO graph structure, the information content of GO terms, or a combination of both. In this paper, we present a hybrid approach which utilizes both the topological features of the GO graph and information contents of the GO terms. More specifically, we 1) consider a fuzzy clustering of the GO graph based on the level of association of the GO terms, 2) estimate the GO term memberships to each cluster center based on the respective shortest path lengths, and 3) assign weightage to GO term pairs on the basis of their dissimilarity with respect to the cluster centers. We test the performance of our semantic similarity measure against seven other previously published similarity measures using benchmark protein-protein interaction datasets of Homo sapiens and Saccharomyces cerevisiae based on sequence similarity, Pfam similarity, area under ROC curve, and measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.