Abstract
An extension of the latent Markov Rasch model is described for the analysis of binary longitudinal data with covariates when subjects are collected in clusters, such as students clustered in classes. For each subject, a latent process is used to represent the characteristic of interest (e.g., ability) conditional on the effect of the cluster to which he or she belongs. The latter effect is modeled by a discrete latent variable associated to each cluster. For the maximum likelihood estimation of the model parameters, an Expectation-Maximization algorithm is outlined. Through the analysis of a data set collected in the Lombardy Region (Italy), it is shown how the proposed model may be used for assessing the development of cognitive achievement. The data set is based on test scores in mathematics observed over 3 years on middle school students attending public and non-state schools. Manuscript received March 20, 2009 Revision received July 2, 2010 Accepted July 10, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.