Abstract

The objective of this research work is to effectively deploy improved Binary Artificial Fish Swarm optimization Algorithm (BAFSA) with the data classification techniques. The improvement has been made with accordance to the condition of visual scope and the movement of fish to update towards the central position and chasing behavior towards best point of movement has been modified among the given population. The experimental results show that feature selection by BAFSA and classification by Decision trees and Gaussian Naïve bayes algorithm provides an improved accuracy of about 89.6% for Pima Indian diabetic dataset, 91.1% for lenses dataset and 94.4% for heart disease dataset. Statistical analysis has also been made using Fisher’s F-Test for two sample variance and the selected risk factors such as glucose, insulin level, blood pressure for diabetics datasets, spectacle prescription, tear production rate for lenses dataset and trestbps, cholesterol level, thalach, chest pain type for heart disease dataset are found to be significant with R2<0.001 respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.