Abstract

The thermodynamic and rheological properties of the Pd 40Ni 40P 20 bulk metallic glass are explored by means of an indentation creep technique around the glass transition. We have developed a dedicated instrumented indentation apparatus allowing to assess the mechanical properties at elevated temperatures. The analysis of results is made possible by using the viscoelastic solutions of contact mechanics. We also analyse the thermodynamics of creep around glass transition to estimate the activation free energy changes from the activation free enthalpy changes via the shear modulus – temperature data. The shear viscosity values extracted using this technique allow for the derivation of activation energies (free enthalpy 210 kJ/mol, enthalpy 456 kJ/mol, entropy 410 J/mol/K) for the flow process. All these properties were found to closely match with those obtained using conventional techniques for viscosity measurements. Compared to the latter, the indentation creep technique requires small volumes and samples are easy to prepare. It is therefore expected that such a technique might be employed for the study of glass transition in metallic glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.