Abstract

Background and ObjectiveMotor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with Parkinson’s disease (PD). There is a need for a technology-based system to provide reliable information about the duration in different medication phases that can be used by the treating physician to successfully adjust therapy. MethodsTwo KinetiSense motion sensors were mounted on the most affected wrist and ankle of 19 PD subjects (age: 42–77, 14 males) and collected movement signals as the participants performed seven daily living activities in their medication OFF and ON phases. A feature selection and a classification algorithm based on support vector machine with fuzzy labeling was developed to detect medication ON/OFF states using gyroscope signals. The algorithm was trained using approximately 15% of the data from four activities and tested on the remaining data. ResultsThe algorithm was able to detect medication ON and OFF states with 90.5% accuracy, 94.2% sensitivity, and 85.4% specificity. It performed equally well for all the activities with an average accuracy of 91.3% for the activities that were used in the training phase and 88.4% for the new activities. ConclusionsThe developed sensor-based algorithm could provide objective and accurate assessment of medication states that can lead to successful adjustment of the therapy resulting in considerably improved care delivery and quality of life of PD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.