Abstract

This study employs the concept of applying constant-phase models to input respiratory impedance data obtained with the non-invasive Forced Oscillation Technique (FOT) lung function test. Changes in respiratory mechanics from healthy and chronic obstructive pulmonary disease (COPD) diagnosed patients are observed with a four- and a five-parameter constant-phase model. Tissue damping ( p ≪ 0.01), tissue elastance ( p < 0.02) and tissue hysteresivity ( p ≪ 0.01) are calculated from the identified model parameters, providing significant separation between healthy and COPD groups. Limitations of the four-parameter constant-phase model are shown in relation to frequency-dependent impedance values within the range 4–48 Hz. The results clearly show that the five-parameter constant-phase model outperforms the four-parameter constant-phase model in this frequency range. The averaged error is 0.02 and 0.04 for healthy subjects in the five-parameter and four-parameter constant-phase models, respectively. The results show that the identified model values are sensitive to variations between healthy and COPD lungs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.