Abstract
The direct socio-economic consequences of the deterioration of aging infrastructure systems have triggered a continuous process of revising and updating current design standards and guidelines for critical network components. Specifically, long-term degradation processes demand the analysis and evaluation of vital structural assets such as prestressed concrete bridges. It is crucial to develop theoretically consistent, user-friendly, and non-destructive methodologies that engineering professionals can employ to prevent and mitigate potential catastrophic outcomes during the service life of these bridges. This study provides a thorough review of the available testing methods employed over the years for prestressed concrete bridges and introduces a comprehensive framework for evaluating existing methods for residual prestress force assessment. Through a multi-criteria selection process, the three most feasible tests were designed and carried out on an existing 66-year-old balanced cantilever box girder bridge exposed to freezing temperatures that affected the instrumentation plan and test execution. Finally, predictive models compliant with standard codes were calibrated based on the experimental results and the life cycle loss of prestress forces was evaluated to assess relevant bounding intervals. Findings reveal limited on-site testing and discrepancies between calculated residual forces and predictions by standard codes. The saw cut method showed a 18% difference from the initial applied prestress according to the prestress protocol, suggesting the use of a cover meter and concrete modulus evaluation for improved accuracy. The strand cutting method resulted in a 14% difference, emphasizing the need for stress redistribution assessment. The second-order deflection method showed a 6% difference, indicating a focus on enhanced boundary conditions and thorough sensitivity analysis for future investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.