Abstract
Red blood cell distribution width (RDW) is a quantitative measure of the variability in size of circulating erythrocytes. It was recently reported that RDW is a prognostic factor for infection diseases, cardiovascular and pulmonary diseases, as well as some neoplasms. Moreover, RDW is remarkably strong predictor of longevity, including all causes of death, for adults aged 45 years and older. To explain this occurrence it was proposed that persistent IGFs/mTOR signaling is one of the factors that play a role in affecting the RDW and mortality.The above observations induced us to analyze the prognostic role of RDW in chronic lymphocytic leukemia (CLL) being the most frequent type of adult leukemia in Western countries. The obtained results have shown that RDW may be considered as a potential CLL prognostic marker. Elevated RDW level at the moment of diagnosis was associated with advanced disease and presence of other poor prognostic factors. It is also connected with overall survival indicating shorter time in patients with elevated RDW. It is possible that the presently observed correlation between mortality and RDW of the CLL patients is affected by their metabolic (IGF-1/mTOR driven)- rather than chronological- aging. The patients with high level of RDW are expected to have an increased persistent level of IGF-1/mTOR signaling. Within the framework of personalized therapy, these CLL patients therefore would be expected to be more sensitive to the treatment with mTOR inhibitors.
Highlights
Chronic lymphocytic leukemia (CLL) is the most frequently diagnosed leukemia of older patients in Western countries
Red blood cell distribution width (RDW) is remarkably strong predictor of longevity, including all causes of death, for adults aged 45 years and older. To explain this occurrence it was proposed that persistent IGFs/mTOR signaling is one of the factors that play a role in affecting the RDW and mortality
B cell receptor (BCR) and chemokine receptors were reported to allow lymphocytes to be localized in lymphoid tissues and to form the CLL microenvironment [6]
Summary
Chronic lymphocytic leukemia (CLL) is the most frequently diagnosed leukemia of older patients in Western countries. The disease is characterized by the accumulation of leukemic CD19+/CD5+/CD23+ B cells in the blood, bone marrow, lymph nodes and spleen [1, 2, 3]. Lots of mechanisms involved in leukemic transformation are reported. The deletion of specific micro-RNA genes leads to the resistance of B lymphocytes towards apoptosis [1, 4]. The B cell receptor (BCR) signaling plays an important pathogenic role because of BCR-dependent survival of leukemic lymphocytes [5]. The accessory cells of microenvironment can promote leukemic cell growth. BCR and chemokine receptors were reported to allow lymphocytes to be localized in lymphoid tissues and to form the CLL microenvironment [6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.