Abstract

In many developing country’s mining exploitations are the main activities sources, and its exploitation is generating many mining wastes and environmental impacts. In order to use these waste, an innovative powder and aggregate were designed, aimed at providing alternative materials by cementitious supplementary materials and sand in Portland cement mortars. This paper investigates the use of raw mineral waste from some developing countries, namely Granite Residue (GR), from Niger, Mining Tailings (MT), from Madagascar, and red Volcanic Scoria (VS), from Cameroon as building materials. These raw materials were valorized as supplementary cementitious materials (GR powder, MS powder and VS powder) and as sand (GR sand and VS sand). GR sand and VS sand were used by 100% replacement of standard sand and GR powder, MS powder and VS powder were used by 5, 15, 25, or/and 35% cement replacement. Physical properties and mechanical properties of raw materials used and mortars obtained were investigated. The effects of these raw materials on properties of mortar mixes were studied and reported. Results show that, with sand from raw mineral waste materials, the compressive and flexural strengths of the produced mortar represented up than 70% and up than 85% respectively in comparison with mortar produce with siliceous standard sand. The reduction of strength of mortar with raw powder as ordinary Portland cement replacement is generally smaller than replacement ratio. Activity index of each raw powder is about 75% for ratio replacement of 5, 15 and 25%. Particle size distribution of raw powder and sand have an influence on the workability and mechanical properties of mortars. In conclusion, the use of raw mineral waste as a raw powder or as sand for mortar production presents an economical and environmental advantage for developing countries where mining exploitations are abundant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.