Abstract

Recently, we have investigated the ionization potential (IP) theorem for some small molecules in the presence of external electric field [M. P. Borpuzari et al., J. Chem. Phys. 144, 164113 (2016)]. In this article, we assess the performance of some density functionals, local density approximation, generalized-gradient approximation (GGA), hybrid, meta-GGA hybrid, and range-separated functionals in the presence of two different solvent dielectrics, water and cyclohexane, in reproducing the vertical oxidation energy, reduction energy, and the frontier orbital energies. We also study the accessibility of different computational solvent models like the polarizable continuum model (PCM) and non-equilibrium PCM (NEPCM) in reproducing the desired properties. In general, the range-separated functionals do not perform well in reproducing orbital energies in the PCM. Range separation with the NEPCM is better. It is found that CAM-B3LYP, M06-2X, and ωB97XD functionals reproduce highest occupied molecular orbital energy in solvents, which may be due to the cancellation of PCM and density functional theory errors. Finally, we have tested the validity of the IP theorem in the solvent environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call