Abstract
In this paper, a method for assessment of quadratic phase coupling (QPC) between respiration and heart rate variability (HRV) is presented. First, a method for QPC detection is proposed named real wavelet biphase (RWB). Then, a method for QPC quantification is proposed based on the normalized wavelet biamplitude (NWB). A simulation study has been conducted to test the reliability of RWB to identify QPC, even in the presence of constant delays between interacting oscillations, and to discriminate it from quadratic phase uncoupling. Significant QPC was assessed based on surrogate data analysis. Then, quadratic cardiorespiratory couplings were studied during a tilt-table test protocol of 17 young healthy subjects. Simulation study showed that RWB is able to detect even weak QPC with delays in the range of [Formula: see text]s, which are usual in the autonomic nervous system (ANS) control of heart rate. Results from the database revealed a significant reduction ([Formula: see text]) of NWB between respiration and both low and high frequencies of HRV in head-up tilt position compared to early supine. The proposed technique detects and quantifies robustly QPC and is able to track the coupling between respiration and various HRV components during ANS changes. The proposed method can help to assess alternations of nonlinear cardiorespiratory interactions related to ANS dysfunction and physiological regulation of HRV in cardiovascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.