Abstract

The aim of this study is to assess and compare the proliferation resistances (PR) of three possible Generation IV lead-cooled fast reactor fuel cycles, involving the reprocessing techniques Purex, Ganex and a combination of Purex, Diamex and Sanex, respectively. The examined fuel cycle stages are reactor operation, reprocessing and fuel fabrication. The TOPS methodology has been chosen for the PR assessment, and the only threat studied is the case where a technically advanced state diverts nuclear material covertly.According to the TOPS methodology, the facilities have been divided into segments, here roughly representing the different forms of nuclear material occurring in each examined fuel cycle stage. For each segment, various proliferation barriers have been assessed. The results make it possible to pinpoint where the facilities can be improved.The results show that the proliferation resistance of a fuel cycle involving recycling of minor actinides is higher than for the traditional Purex reprocessing cycle. Furthermore, for the purpose of nuclear safeguards, group actinide extraction should be preferred over reprocessing options where pure plutonium streams occur. This is due to the fact that a solution containing minor actinides is less attractive to a proliferator than a pure Pu solution. Thus, the safeguards analysis speaks in favor of Ganex as opposed to the Purex process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.