Abstract
The culture of skin fibroblasts in the presence of 0.01% (w/v) dextran sulphate results in complete proteolytic processing of procollagen to collagen. Processing occurs predominantly via a pN-collagen intermediate, suggesting that C-propeptide cleavage occurs early during the processing pathway. The processed collagen is associated with the cell-layer fraction. This method of inducing procollagen processing was evaluated for use in detecting procollagen processing abnormalities in heritable connective-tissue diseases. Abnormal type I procollagen processing was clearly demonstrated in two cases with known defects of pN-propeptide cleavage. In one, the cleavage deficiency was due to diminished N-proteinase activity (dermatosparaxis) and in the other case (Ehler's-Danlos syndrome type VIIA) the cleavage site was deleted. In a case of osteogenesis imperfecta (type II) the slow electrophoretic migration of type I collagen alpha-chains due to over-modification of lysine was readily demonstrated. Inefficient procollagen processing was also evident in this patient, as had been previously reported [de Wet, Pihlanjaniemi, Myers, Kelly & Prockop (1983) J. Biol. Chem. 258, 7721-7728]. Thus this method of culture in the presence of dextran sulphate provides a simple and rapid procedure for the detection of procollagen processing defects and electrophoretic abnormalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.