Abstract

Gd-doped ceria (GDC)-based composites, including a eutectic mixture of lithium and sodium carbonate (NLC) as second phase, were prepared using several processing routes, namely chemical synthesis, co-firing of both phases, or impregnation of a presintered porous matrix. LiAlO2-based composites were also prepared and used as reference. The structural, microstructural, and electrical properties (impedance spectroscopy in air, up to 700°C) of these materials were assessed in detail. A limited set of compositions was also used in measurements of total electrical conductivity at different oxygen partial pressures (from 0.21 to <10−25 atm), in the 600°C to 700°C range. The results obtained confirmed the enormous impact of the processing route on the percolation of the ceramic phase. In the exploited range of operating conditions, GDC-NLC composites prepared by infiltration of molten carbonates within a mechanically robust ceramic matrix exhibit a high total ionic conductivity strongly influenced by the contribution of the molten salt while the ceramic phase is decisive in the appearance of a significant component of electronic conductivity under reducing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.