Abstract

The aim of this study is to focus on the effect of probe-to-specimen distance in kidney stone treatment with hydrodynamic bubbly cavitation. Cavitating bubbles were generated by running phosphate buffered saline (PBS) through stainless steel tubing of inner diameter of 1.56 mm at an inlet pressure of ∼10,000 kPa, which was connected to a 0.75 mm long probe with an inner diameter of 147 μm at the exit providing a sudden contraction and thus low local pressures. The bubbles were targeted on the surface of nine calcium oxalate kidney stones (submerged in a water pool at room temperature and atmospheric pressure) from three different distances, namely, 0.5 mm, 2.75 mm, and 7.75 mm. The experiments were repeated for three different time durations (5 min, 10 min, and 20 min). The experimental data show that amongst the three distances considered, the distance of 2.75 mm results in the highest erosion amount and highest erosion rate (up to 0.94 mg/min), which suggests that a closer distance does not necessarily lead to a higher erosion rate and that the probe-to-specimen distance is a factor of great importance, which needs to be optimized. In order to be able to explain the experimental results, a visualization study was also conducted with a high speed CMOS camera. A new correlation was developed to predict the erosion rates on kidney stones exposed to hydrodynamic cavitation as a function of material properties, time, and distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.