Abstract

We consider the steady state equations for a compressible fluid. For low speed flow the system is stiff since the ratio of the convective speed to the speed of sound is very small. To overcome this difficulty we alter the time dependency of the equations while retaining the same steady state operator. In order to achieve high numerical resolution we also alter the artificial dissipation (or Roe matrix) of the numerical scheme. The definition of preconditioners and artificial dissipation terms can be formulated conveniently by using other sets of dependent variables rather than the conservation variables. The effects of different preconditioners, artificial dissipation and grid density on accuracy and convergence to the steady state of the numerical solutions are presented in detail. The numerical results obtained for inviscid and viscous two- and three-dimensional flows over external aerodynamic bodies indicate that efficient multigrid computations of flows with very low Mach numbers are now possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.