Abstract

Standardizing cerebrospinal fluid (CSF) laboratory protocols will improve the reliability and availability of clinical biomarker testing required for prescription of novel Alzheimer disease (AD) therapies. This study evaluated several preanalytical handling and storage factors common to β-amyloid1-42 (Aβ1-42), β-amyloid1-40 (Aβ1-40), and phosphorylated tau (pTau181) concentrations including storage at different temperatures, extended cap contact, various mixing methods, and multiple freeze-thaw cycles. Aβ1-42, Aβ1-40, and pTau181 concentrations were measured using LUMIPULSE G1200 automated assays. Samples were collected in polypropylene tubes of various volumes. Sample cap-contact was evaluated by storing samples in upright and inverted positions at either 4°C for 1 week or -80°C for 1 month. To assess mixing methods, samples were freeze-thawed and mixed by inversion, vortex, horizontal roller, or unmixed prior to assay sampling. The impact of successive freeze-thaw cycles was assessed through freezing, thawing, and analyzing CSF samples. Short-term storage at 4°C did not affect Aβ1-42, Aβ1-40, or pTau181 measurements in any tube type. Tube cap contact affected Aβ1-42 in 2.5 mL tubes and pTau181 levels in 10 mL tubes. No difference was observed between mixing methods. After 4 freeze-thaw cycles, Aβ1-42 significantly decreased but Aβ1-40 remained unchanged. Utilizing the Aβ1-42/Aβ1-40 ratio, Aβ1-42 values normalized, maintaining ratio values within ±5% of baseline measurements. Storage of CSF at 4°C for 1 week or -80°C for 1 month did not significantly affect Aβ1-42, Aβ1-40, pTau181, or associated ratio measurements. Tube cap-contact impacted pTau181 and pTau181/Aβ1-42 values in larger tubes. Mixing methods are equivalent. The Aβ1-42/Aβ1-40 ratio compensates for freeze-thaw variability up to 4 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call