Abstract
Solar energy is a relatively free renewable, clean, green, and environmentally friendly energy resource produced from the sun, using different technologies like solar thermal and photovoltaic (PV) modules to generate heat and electricity, respectively. This paper aims to assess and compare the power generation performance characteristics of different solar PV module technologies by simulation, deploying identical input temperature and irradiance parameters. The solar PV designs were simulated using PVsyst Version 6.73 for 26.0 kW annual power and 42.9 MWh/year annual yields using the climate data of Sydney, Australia. The results show that monocrystalline solar technologies needed an area of 163m2, while polycrystalline and thin films needed areas of 173m2 and 260m2 respectively to generate 42.9MWh annual yield. The monocrystalline PV modules are more efficient at solar energy conversion than polycrystalline and thin film technologies, respectively (94.2% and 62.7%). The symmetric semi-toroid dome of sun heights against azimuthal angles show 13 bimodal pyriforms, that cut the azimuths at least twice on each of the optimisation lines. These optimal solution points were visible for every sunlight hour of between 6 and 18 hours (inclusive). They show convex sets of global optima (or local optima) with one minimum in the interval of convexity. Also, each of the minimum points for each of the 13 directed fish-like bimodal pyriforms was on ±60° azimuth. However, the assessment of respective PV module characteristics with respect to variation of irradiation and temperature, show that the general results from simulation displayed disparate changes in the voltages and currents of the generated power with respect to different solar PV modules. The proposed semi-toroid model indicates that many optimisation solutions for easier, cheaper, quicker and more efficient power generation are possible with appropriate design. It is recommended that the installation of a single-axis solar tracker or maximum power point tracker could overcome the azimuth angle effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.