Abstract

Rice, a primary food source in many countries of the world accumulate potentially harmful elements which pose a significant health hazard to consumers. The current study aimed to evaluate potentially toxic and mineral elements in both paddy soils and rice grains associated with allied health risks in Malakand, Pakistan. Rice plants with intact root soil were randomly collected from paddy fields and analyzed for mineral and potentially toxic elements (PTEs) through inductively coupled plasma optical emission spectrometry (ICP‒OES). Through deterministic and probabilistic risk assessment models, the daily intake of PTEs with allied health risks from consumption of rice were estimated for children and adults. The results of soil pH (< 8.5) and electrical conductivity (EC > 400 μs/cm), indicated slightly saline nature. The mean phosphorus concentration of 291.50 (mg/kg) in soil samples exceeded FAO/WHO permissible limits. The normalized variation matrix of soil pH with respect to Ni (0.05), Ca (0.05), EC (0.08), and Mg (0.09), indicated significant influence of pH on PTEs mobility. In rice grains, the mean concentrations (mg/kg) of Mg (463.81), Al (70.40), As (1.23), Cr (12.53), Cu (36.07), Fe (144.32), Mn (13.89), and Ni (1.60) exceeded FAO/WHO safety limits. The transfer factor >1 for K, Cu, P and Zn indicated bioavailability and transfer of these elements from soil to rice grains. Monte Carlo simulations of hazard index >1 for Cr, Zn, As, and Cu with certainties of 89.93% and 90.17%, indicated significant noncarcinogenic risks for children and adults from rice consumption. The total carcinogenic risk (TCR) for adults and children exceeded the USEPA acceptable limits of 1×10−6 to 1×10−4, respectively. The sensitivity analysis showed that the ingestion rate was a key risk factor. Arsenic (As) primarily influenced total cancer risk (TCR) in children, while chromium (Cr) significantly impacted adults. Deterministic cancer risk values slightly exceeded probabilistic values due to inherent uncertainties in deterministic analysis. Rice consumption poses health risks, mainly from exposure to Cr, Ni and As in the investigated area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.