Abstract

A warmer climate has caused more extreme climate events like the heatwave or extreme precipitation, which has led to a large number of lives and economic losses. In this study, we adopt historical daily precipitation from rainfall estimates on a gridded network (REGEN) and future daily projections from 10 general circulation models (GCMs) to analyze the potential risks of extreme precipitation due to changes in the magnitude and frequency. We calculate the 10-year and 100-year return levels by fitting the partial duration series (PDS) data with the generalized Pareto (GP) distribution. The potential risks are quantified in two terms: by the ratio of the magnitude to the threshold and by the exceedance frequency comparing to the theoretical value. The results show that in the future, about 46% of the world may suffer from mid or high risk of change in extreme precipitation. Most regions show higher risk due to the increased frequency of extreme precipitation events under the RCP8.5 scenario. The high risk of humid regions mainly appears under the RCP8.5 scenario and is mainly driven by frequency change, while that of arid regions appears under both the scenarios and is driven by both the frequency and magnitude change. The tropical rainforest climate areas of South America (SA (N)), the tropical savanna or tropical wet monsoon and tropical dry areas of South Asia (SA), and the subarctic climate areas of Northern Asia (NOA) may suffer more risks from the view of both magnitude and frequency changes of extreme precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call