Abstract

Although pre- and postoperative imaging of Achilles tendon rupture (ATR) has been well documented, radiographic evaluations of postoperative intratendinous healing and microstructure are still lacking. Diffusion tensor imaging (DTI) is an innovative technique that offers a noninvasive method for describing the microstructure characteristics and organization of tissues. DTI was used in the present study for quantitative assessment of fiber continuity postoperatively in patients with acute ATR. The data from 16 patients with ATR from 2005 to 2012 were retrospectively analyzed. The microstructure of ART was evaluated using tendon fiber tracking, tendon continuity, fractional anisotropy, and apparent diffusion coefficient values by way of DTI. The distal and proximal portions were measured separately in both the ruptured and the healthy extremities of each patient. The mean patient age was 41.56 ± 8.49 (range 26 to 56) years. The median duration of follow-up was 21 (range 6 to 80) months. The tendon fractional anisotropy values of the ruptured Achilles tendon were significantly lower statistically than those of the normal side (p = .001). However, none of the differences between the 2 groups with respect to the distal and proximal apparent diffusion coefficient were statistically significant (p = .358 and p = .899, respectively). In addition, the fractional anisotropy and apparent diffusion coefficient measurements were not significantly different in the proximal and distal regions of the ruptured tendons compared with the healthy tendons. The present study used DTI and fiber tracking to demonstrate the radiologic properties of postoperative Achilles tendons with respect to trajectory and tendinous fiber continuity. Quantifying DTI and fiber tractography offers an innovative and effective tool that might be able to detect microstructural abnormalities not appreciable using conventional radiologic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.