Abstract

Recently, a shuttle-based offline magnetic resonance-guided radiotherapy (MRgRT) approach was proposed. This study aims to evaluate the positional reproducibility in the immobilized head and neck using a 1.5-T MR-simulator (MR-sim) on healthy volunteers. A total of 159 scans of 14 healthy volunteers were conducted on a 1.5-T MR-sim with thermoplastic mask immobilization. MR images with isotropic 1.053 mm3 voxel size were rigidly registered to the first scan based on fiducial, anatomical and gross positions. Mean and standard deviation of positional displacements in translation and rotation were assessed. Systematic error and random errors of positioning in the head and neck on the MR-sim were determined in the translation of, and in the rotation of roll, pitch and yaw. The systematic error (Σ) of translation in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) direction was 0.57, 0.22 and 0.26 mm for fiducial displacement, 0.28, 0.10 and 0.52 mm for anatomical displacement, and 0.53, 0.22 and 0.49 mm for gross displacement, respectively. The random error (σ) in corresponding translation direction was 2.07, 0.54 and 1.32 mm for fiducial displacement, 1.34, 0.73 and 2.04 mm for anatomical displacement, and 2.24, 0.86 and 2.61 mm for gross displacement. The systematic error and random error of rotation were generally smaller than 1°. Our results suggested that high gross positional reproducibility (<1 mm translational and <1° rotational systematic error) could be achieved on an MR-sim for the proposed offline MRgRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.