Abstract

Poplar looper (Apocheima cinerarius Erschoff) is a destructive insect infesting Euphrates or desert poplars (Populus euphratica) in Xinjiang, China. Since the late 1950s, it has been plaguing desert poplars in the Tarim Basin in Xinjiang and caused widespread damages. This paper presents an approach to the detection of poplar looper infestations on desert poplars and the assessment of the severity of the infestations using time-series MODIS NDVI data via the wavelet transform and discriminant analysis, using the middle and lower reaches of the Yerqiang River as a case study. We first applied the wavelet transform to the NDVI time series data in the period of 2009–2014 for the study area, which decomposed the data into a representation that shows detailed NDVI changes and trends as a function of time. This representation captures both intra- and inter-annual changes in the data, some of which characterise transient events. The decomposed components were then used to filter out details of the changes to create a smoothed NDVI time series that represent the phenology of healthy desert poplars. Next the subset of the original NDVI time series spanning the time period when the pest was active was extracted and added to the smoothed time series to generate a blended time series. The wavelet transform was applied again to decompose the blended time series to enhance and identify the changes in the data that may represent the signals of the pest infestations. Based on the amplitude of the enhanced pest infestation signals, a predictive model was developed via discriminant analysis to detect the pest infestation and assess its severity. The predictive model achieved a severity classification accuracy of 91.7% and 94.37% accuracy in detecting the time of the outbreak. The methodology presented in this paper provides a fast, precise, and practical method for monitoring pest outbreak in dense desert poplar forests, which can be used to support the surveillance and control of poplar looper infestations on desert poplars. It is of great significance to the conservation of the desert ecological environment.

Highlights

  • Euphrates or desert poplars (Populus euphratica) are medium-sized deciduous trees mainly found in fluvial and floodplain areas in arid and semi-arid regions, where the groundwater is close to the surface

  • The NDVI time series was decomposed into eight levels through the discrete wavelet transform (DWT)

  • We presented an approach to the detection and severity classification of the infestation of poplar looper on desert poplars using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI

Read more

Summary

Introduction

Euphrates or desert poplars (Populus euphratica) are medium-sized deciduous trees mainly found in fluvial and floodplain areas in arid and semi-arid regions, where the groundwater is close to the surface. Their unique physiological traits make them tolerant of saline and brackish water and resistant to droughts and sand storms. Poplar plantations in China have been constantly threatened by defoliating insects, the poplar looper Apocheima cinerarius Erschoff (Lepidoptera: Geometridae). There are widespread outbreaks of insect pests in desert poplar plantations in northwest China due to the weakened resistance of water-stressed poplars to pests and diseases resulted from excessive unregulated water diversion and climate change. Poplar looper is the most serious insect pest affecting desert poplars in the Tarim Basin, Xinjiang, China, which starts to spread to the oases

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call