Abstract

Embryonal carcinoma cells are pluripotent stem cells derived from teratocarcinomas and are considered to be the malignant counterparts of human embryonic stem cells. As there are few reliable experimental systems available to study the molecular mechanisms governing normal embryogenesis, well-characterized human embryonal carcinoma stem cell lines may provide a robust and simple model to study certain aspects of pluripotency and cellular differentiation. Here, we have analysed NTERA-2 cL.D1 cells at molecular and cellular levels during expansion and differentiation, via formation of cell aggregates similar to embryoid bodies in embryonic stem cells. Thus, human embryonal carcinoma cells may provide a valuable insight into cell fate determination, into the embryonic ectoderm, mesoderm and endoderm and their downstream derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call