Abstract

Piezoelectric transducers are widely utilized in Structural Health Monitoring (SHM). They are used both in guided wave-based and electromechanical impedance-based methods. Transducer debonding or unevenly distributed glue underneath the transducer reduce the performance and reliability of the SHM system. Therefore, quality assessment methods for glue layer need to be developed. In this paper, the authors present results obtained from two methods that allow the quality assessment of adhesive bonds of piezoelectric transducers.The electromechanical impedance method is utilized to analyze transducer adhesive bonding. An improperly prepared bonding layer is a source for changes in the electromechanical impedance characteristics in comparison to a perfectly bonded transducer. In the resistance characteristics of the properly bonded transducer the resonance peaks of the structure were clearly visible. In the case when adhesive layer is not equally distributed under sensor, the amplitudes of structural resonance peaks are reduced. In the case of completely detached transducer, the structural resonance peaks disappear and only resonance peaks of the transducer itself are visible. These peaks (peaks of free transducer hanging on wires) are significantly larger than the resonance peaks of the investigated structure in the considered frequency interval.The bonding layer shape is also analyzed using time-domain terahertz spectroscopy in reflection mode. This method allows to visualize the adhesive layer distribution based on C-scan analysis. C-scans of signals or envelope-detected signals can be used to estimate the area of proper adhesion between bonding agent and transducer and hence provides a more quantitative approach towards transducer inspection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.