Abstract
Sanitary landfills are considered one of the main sources of contamination of water resources due to the generation of leachate with a high content of dissolved organic matter (DOM), inorganic material, and toxic elements. This study aimed to determine the influence of leachate on the physicochemical quality and hydrogeochemical processes which determine the chemical composition of groundwater in an area near a municipal sanitary landfill site. In situ parameters (pH, temperature, electrical conductivity, dissolved oxygen, ORP), physicochemical parameters (HCO3−, PO43−, Cl−, NO3−, SO42−, NH4+, Ca2+, Mg2+, Na+, K+), and dissolved organic matter were analyzed. The content of dissolved organic matter (DOM) was determined by 3D fluorescence microscopy. The presence of Cl−, NO3−, NH4+, PO43−, BOD, and COD indicated the presence of contamination. The significant correlation between NO3− and PO43− ions (r = 0.940) and DOM of anthropogenic origin in the 3D fluorescence spectra confirm that its presence in the water is associated with the municipal landfill site in question. The type of water in the area is Mg-HCO3, with a tendency to Na-HCO3 and Na-SO+-Cl. The water-rock interaction process predominates in the chemical composition of water; however, significant correlations between Na+ and Ca2+ (r = 0.876), and between K+ and Mg2+ (r = 0.980) showed that an ion exchange process had taken place. Likewise, there is enrichment by HCO3− and SO42− ions due to the mineralization of the organic matter from the leachate. The groundwater quality that supplies the study area is being affected by leachate infiltration from the sanitary landfill.
Highlights
Introduction conditions of the Creative CommonsThe largest liquid freshwater resource on earth is stored as groundwater and is water for human consumption and agriculture
The presence of nitrogen, phosphate, and anthropogenic dissolved organic matter in drinking water represents a risk to human health
This research indicates that the predominant flow system is local, and the primary process that controls the physicochemical groundwater quality is the water-rock interaction
Summary
Introduction conditions of the Creative CommonsThe largest liquid freshwater resource on earth is stored as groundwater and is water for human consumption and agriculture.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.