Abstract
On-site wastewater treatment systems aim to assimilate domestic effluent into the environment. Unfortunately failure of such systems is common and inadequate effluent treatment can have serious environmental implications. A research project was undertaken to determine the role of physical and chemical soil properties in the treatment performance of subsurface effluent disposal areas. Monitoring changes in these properties permits improved prediction of the treatment potential of a soil. The changes within soil properties of the disposal area due to effluent application were found to be directly related to the subsurface drainage characteristics, including permeability, clay content and clay type. The major controlling soil physical and chemical attributes were found to be moderate drainage, significant soil cation exchange capacity and dominance of exchangeable Ca or exchangeable Mg over exchangeable Na, low exchangeable Na, clay type and a minimum depth of 0.4 m of potential unsaturated soil before encountering a restrictive horizon. The study confirmed that both the physical properties and chemistry of the soil can be valuable predictive tools for evaluating the long term operation of sewage effluent disposal systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Soil and Sediment Contamination: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.