Abstract

Four types of rigid polyurethane-polyisocyanurate foams (RPU/PIR) were obtained. Three of them were modified by powder fillers, such as cinnamon extract (C10 foam), green coffe extract (KZ10), and cocoa extract (EK10) in an amount of 10 wt %. The last foam was obtained without a filler (W foam). The basic properties and thermal properties of obtained foams were examined. All foams were subjected to degradation in the climatic chamber acting on samples of foams in a defined temperature, humidity, and UV radiation for 7, 14, and 21 days. The physico-mechanical properties of foams were tested. The compressive strength of degraded foams after 7, 14, and 21 days was compared with the compressive strength of nondegraded foams (0 days). The chosen properties of degraded foams, such as cellular structure by scanning electron microscopy (SEM) and changes of chemical structure by FTIR spectroscopy were compared. The obtained foams were also subjected to degradation in a circulating air dryer in an increased temperature (120 °C) for 48 h. Additionally, W, C10, ZK10, EK10 foams were placed in a soil environment and subjected to 28 days biodegradation process. The biochemical oxygen demand (BOD), the theoretical oxygen demand (TOD), and the degree of biodegradation (Dt) of foams were determined in this measurment. Test results showed that the compressive strength of foams decreased with the longer time of foam degradation in the conditioner. The foam subjected to degradation darkened and became more red and yellow in color. The addition of natural compounds of plant origin to foams increased their susceptibility to biodegradation.

Highlights

  • IntroductionThey can be found in sports and recreational products, in military applications, in automotive industry, in airplanes, in furniture, in packaging, in the insulation, in toys, etc

  • Polyurethanes (PU) have become widely used polymers in recent years

  • The course of the foaming process depends on the used raw materials [64]

Read more

Summary

Introduction

They can be found in sports and recreational products, in military applications, in automotive industry, in airplanes, in furniture, in packaging, in the insulation, in toys, etc. The concerns relate primarily to the harmful health effects and environmental problems of oil-based PU and future crude oil shortage [7]. The development of new technologies motivates searching for solutions based on natural and renewable raw materials with such chemical structure that it will allow their quick and easy degradation [4,5,6,7,8].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call