Abstract
The degradation of asulam herbicide by photo electro-Fenton (PEF) and solar photo electro-Fenton (SPEF) processes was studied using an undivided electrochemical BDD/carbon-felt cell to generate H2O2 continuously. A central composite design combined with response surface methodology was applied to determine the optimal operating conditions of current intensity = 0.30 A, [Fe2+] = 0.3 mM, and [Na2SO4] = 0.11 M at pH 3 to achieve the complete degradation of asulam by electro-Fenton. Subsequently, the SPEF process was more efficient treatment compared to PEF, achieving a complete degradation of asulam and 98% of mineralization in 180 min. Moreover, 4-aminobenzenesulfonamide, 4-aminophenol, and 4-benzoquinone were detected as aromatic intermediates, whereas acetic acid, oxalic acid, and NO3− ions were identified as final degradation by-products. Thus, the SPEF process is an efficient alternative for the complete degradation and mineralization of herbicide asulam in an aqueous solution under natural sunlight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.