Abstract

Phosphorus (P) losses from soil to water by erosion and surface runoff have been much studied and quantified. However, P losses by leaching have received much less attention, mainly because, until recently, the quantities involved were not considered to be of environmental significance. Furthermore, P leaching losses, unlike P losses from erosion or surface runoff were not believed to be related to rates of P addition, as inorganic fertilizer or manures. Here we report results from a number of field and laboratory experiments, designed to assess the significance of P leaching losses from soil to water. Annual cumulative total P losses in drainage waters from four UK field sites ranged from about 0.03 to 5 kg P ha−1 during 2001–2002. Molybdate reactive P ranged from 45–57%, soluble organic P from 10–13% and particulate P from 29–45% of total P on the two sites (Broadbalk and Woburn) where they could be accurately measured. The proportions of these different P forms were comparable in all treatments, including drainage waters from the unfertilised soils and soils receiving long-term applications of farmyard manure or inorganic fertilizer. In all soils, there was indication of an Olsen- (0.5 M NaHC03-, pH 8.5) extractable P concentration, (termed the Change-Point), where P measured in field drainage waters or in laboratory soil extracts of 0.01 M CaCl2 began to increase linearly as Olsen-P increased. There was also some agreement between drainage water-P or CaCl2-P and the Olsen-P concentration where the Change-Point occurred. This suggests that CaCl2-extractable P may provide an approximate indicator of soil P concentrations above which significant quantities of P may be lost by leaching under field conditions. There were positive linear relationships between soil dithionate-extractable Al and soil organic C with the Change-Point: [Change Point = [(0.049)[Al3+] minus (9.2)(% organic C)] accounting for 93% of the variance in the data. If this relationship holds under further testing it could well be a useful predictor of Change-Points in different soils. Phosphate sorption isotherms were used to study the soil P concentrations above which P was at risk of moving from soil to water. They showed that soil solution P concentrations were significantly lower between pH 6.9–7.2 than between pH 7.7–8.1, with implications for P loss from soil to water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.