Abstract
Marine environments with naturally high CO 2 concentrations have become important research sites for studying the impacts of future ocean acidification on biological processes. We conducted high temporal resolution pH and temperature measurements in and around a shallow (2.5–3 m) CO 2 vent site off Ischia, Italy in May and June 2008. Loggers were deployed at five stations to monitor water at both the surface and benthos. Our reference station, 500 m from the CO 2 vent, had no noticeable vent influence. It had a naturally high and stable benthic pH (mean 8.16, inter-quartile range (IQ): 8.14–8.18) fluctuating with diel periodicity, presumably driven by community photosynthesis and respiration. A principal component analysis (PCA) revealed that the pH of this station was well constrained by meteorological parameters. In contrast, a station positioned within the vent zone, had a low and very variable benthic mean pH of 7.11 (IQ: 6.91–7.62) with large pH fluctuations not well constrained by a PCA. Any stations positioned within 20 m of the main vent zone had lowered pH, but suffered from abnormally large pH fluctuations making them unsuitable representatives to predict future changes to a shallow coastal environment. Between these extremes, we identified a benthic area with a lower pH of 7.84 (IQ: 7.83–7.88) that retained many of the characteristics of the reference station such as a natural diel pH periodicity and low variability. Our results indicate that a range of pH environments maybe commonplace near CO 2 vents due to their characteristic acidification of benthic water over a wide area. Such environments could become invaluable natural laboratories for ocean acidification research, closely mimicking future CO 2 conditions in a natural setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.