Abstract

Abstract. In the context of the search for a deep geological repository for high-level radioactive waste from nuclear energy a preliminary waste treatment is repeatedly called into play by partitioning and transmutation (P&T). Proponents of this approach promise that with P&T, the requirements for and the risks posed by a – then still necessary – repository could be significantly reduced. However, such technological promises have to be prospectively, promptly and publicly reasonably verifiable. Partitioning is reprocessing in which, in addition to separating uranium and plutonium from the fission products, other material streams (for example, the minor actinides) are extracted. In transmutation, radionuclides – especially through nuclear fission – are converted into other nuclides. Thus, conversion of the parent nuclides into nuclides with shorter half-lives, lower radiotoxicity, or into stable nuclides could be achieved. For the assessment of P&T, essential aspects are the current degree of maturity of necessary technologies, the requirements for research and development, technological development risks, the basic feasibility and objective, risks of a hypothetical operation of corresponding plants and the possible effects on nuclear waste disposal. More specifically, on the technological side, it is all about development periods, technical security requirements and licensability, proliferation risks and implementation periods. The presentation of the results of some hypothetical P&T scenarios is intended to help to assess the impacts on radioactive waste present in Germany, necessary facilities and operating periods. Thus, pyro-chemical and hydrochemical separation processes, special transuranic fuels based on mixed oxides (MOX) or uranium-free fuel types and critical fast reactors, subcritical (accelerator-driven) reactors, as well as molten salt reactors, are considered. One difficulty is that the multiple recycling of the transuranics changes the fuel composition. Detailed statements about these changes are only possible with complex simulation calculations and their influence on safe reactor operation. So far, this has not happened on an international scale. In the modelling presented here, an attempt was made to represent the restrictions that the reactor design has on the fuel composition more precisely, at least insofar as the element composition of the fuel remains the same for the duration of the scenario. Conclusions presented from the analysis of the hypothetical scenarios affect, among other things, necessary operating periods and the number of plants and changes achieved in the stock of both transuranics and fission products.

Highlights

  • For the assessment of partitioning and transmutation (P&T), essential aspects are the current degree of maturity of necessary technologies, the requirements for research and development, technological development risks, the basic feasibility and objective, risks of a hypothetical operation of corresponding plants and the possible effects on nuclear waste disposal

  • In the context of the search for a deep geological repository for high-level radioactive waste from nuclear energy a preliminary waste treatment is repeatedly called into play by partitioning and transmutation (P&T)

  • For the assessment of P&T, essential aspects are the current degree of maturity of necessary technologies, the requirements for research and development, technological development risks, the basic feasibility and objective, risks of a hypothetical operation of corresponding plants and the possible effects on nuclear waste disposal

Read more

Summary

Introduction

For the assessment of P&T, essential aspects are the current degree of maturity of necessary technologies, the requirements for research and development, technological development risks, the basic feasibility and objective, risks of a hypothetical operation of corresponding plants and the possible effects on nuclear waste disposal. In the context of the search for a deep geological repository for high-level radioactive waste from nuclear energy a preliminary waste treatment is repeatedly called into play by partitioning and transmutation (P&T). The presentation of the results of some hypothetical P&T scenarios is intended to help to assess the impacts on radioactive waste present in Germany, necessary facilities and operating periods.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call