Abstract

Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call