Abstract

Owing to the complexity of naphthenic acids (NAs) in oil sands process water (OSPW), previous ozone-treatment studies mainly investigated the removal of classical NAs (aliphatic O2−NAs) and the understanding of ozonation reactivity of other NA species has been limited. This work utilized a silver-ion solid phase extraction (SPE) approach to separate individual NA species into 20 fractions before subsequent ozone treatment. The ozonation reactivity of aromatic and oxidized NA species in isolated fractions was studied for the first time. Untreated and ozone-treated SPE fractions were characterized using ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry. The removals of aliphatic O2−NAs (Fraction 3), aromatic O2−NAs (Fraction 8), O3−NAs (Fraction 11), and O4−NAs (Fraction 17) with an applied ozone dosage of 16.8 mg L−1 were 97.2%, 94.7%, 59.4% and 44.7%, respectively. The results showed that aromatic and oxidized NAs with larger carbon number were favorably removed during ozonation treatment. Comparison of the ozone utilization efficiency for different NA species indicated that the degradation of oxidized NAs consumed more ozone in molar ratio than the degradation of classical and aromatic NAs. The reactivity of oxidized NAs was lower than that of classical NAs because the former consumed more ozone in molar ratio during reactions. Knowing the reactivity of different NA species is crucial for the design of ozonation systems targeting species with high toxicity. Moreover, the utilization of silver-ion SPE pre-separation approach has been demonstrated for future studies investigating the degradation mechanism of distinct NA species under other treatment conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.