Abstract

Transition metals (TMs) (e.g. copper (Cu) and iron (Fe)) and certain organic compounds are known active constituents causing oxidative potential (OP) by inhaled ambient fine particulate matter (PM2.5) in lung fluid. Humic-like substances (HULIS), isolated from atmospheric PM2.5, are largely metal-free and contain mixtures of organics that are capable of complexing TMs. TMs and HULIS co-exist in the water-extractable part of PM2.5. In this work, we used a solid phase extraction procedure to isolate the water-soluble TMs in the hydrophilic fraction (HPI) and HULIS in the hydrophobic fraction (HPO) and carried out this isolation procedure to a set of 32 real-world PM2.5 samples collected in Beijing and Hong Kong, China. We quantified two OP endpoints, namely hydroxyl radical formation (denoted as OP•OH) and ascorbic acid depletion (denoted as OPAA), by the two fractions separately and combined, as well as by the bulk water-soluble aerosols. OP•OH and OPAA were well-correlated in both separate fractions and their combined mixtures or bulk water-soluble aerosols. OP by HPI far exceeded that by HPO. On a per unit PM2.5 mass basis, the Hong Kong samples on average had a higher OPAA and OP•OH than the Beijing samples due to more water-soluble Cu. For HPI, Cu was a dominant OP•OH and OPAA contributor (>80%), although water-soluble Fe was present at a concentration approximately one order of magnitude higher. Suppression effects on OP•OH were observed through comparing the OP of the bulk water-soluble aerosol with that of HPI. Our work reveals the importance of monitoring PM2.5 chemical compositions (especially water-soluble redox active metals). Furthermore, we demonstrate the need to consider metal-organic interactions when evaluating the aggregate OP by PM2.5 from individual components or apportioning OP by PM2.5 to specific chemical components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call