Abstract

Heat transfer models for agitated, jacketed, laboratory-scale batch reactors are required to predict process temperature profiles with great accuracy for tasks associated with chemical process development such as batch crystallization and chemical reaction kinetics modeling. The standard approach uses a reduced model which assumes the system can be adequately represented by a single overall heat transfer coefficient which is independent of time; however, the performance of reduced models for predicting the evolution of process temperature is rarely discussed. Laboratory scale (0.5 and 5 L) experiments were conducted using a Huber thermoregulator to deliver a thermal fluid at constant flow to a heat transfer jacket. It is demonstrated that the relative specific heat contribution of the reactor and inserts represent an increasing obstacle for these transient models with decreasing scale. However, a series of experiments implied that thermal losses were the limiting factor in the performance of a single coef...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.