Abstract

Bone collagen-matrix contributes to the mechanical properties of bone by imparting tensile strength and elasticity, which can be indirectly quantified by ultrashort echo time magnetization transfer ratio (UTE-MTR) to assess osteoporosis. To evaluate osteoporosis at the human lumbar spine using UTE-MTR. Prospective. One hundred forty-eight-volunteers (age-range, 50-85; females, N = 90), including 81-normal bone density, 35-osteopenic, and 32-osteoporotic subjects. Ten additional healthy volunteers were recruited to study the intrasession reproducibility of the UTE-MT. 3T/UTE-MT, short repetition-time adiabatic inversion recovery prepared UTE (STAIR-UTE), and iterative decomposition of water-and-fat with echo-asymmetry and least-squares estimation (IDEAL-IQ). Fracture risk was calculated using Fracture-Risk-Assessment-Tool (FRAX). Region-of-interests (ROIs) were delineated on the trabecular area in the maps of bone-mineral-density, UTE-MTR, collagen-bound water proton-fraction (CBWPF), and bone-marrow fat fraction (BMFF). Linear-regression and Bland-Altman analysis were performed to assess the reproducibility of UTE-MTR measurements in the different scans. UTE-MTR and BMFF were correlated with bone-mineral-density using Pearson's regression and with FRAX scores using nonlinear regression. The abilities of UTE-MTR, CBWPF, and BMFF to discriminate between the three patient subgroups were evaluated using receiver-operator-characteristic (ROC) analysis and area-under-the-curve (AUC). Decision-curve-analysis (DCA) and clinical-impact curves were used to evaluate the value of UTE-MTR in clinical diagnosis. The DeLong test was used to compare the ROC curves. P-value <0.05 was considered statistically significant. Excellent reproducibility was obtained for the UTE-MT measurements. UTE-MTR strongly correlated with bone-mineral-density (r = 0.76) and FRAX scores (r = -0.77). UTE-MTR exhibited higher AUCs (≥0.723) than BMFF, indicating its superior ability to distinguish between the three patient subgroups. The DCA and clinical-impact curves confirmed the diagnostic value of UTE-MTR. UTE-MTR and CBWPF showed similar performance in correlation with bone-mineral-density and cohort classification. UTE-MTR strongly correlates with bone-mineral-density and FRAX and shows great potential in distinguishing between normal, osteopenic, and osteoporotic subjects. 1 TECHNICAL EFFICACY: Stage 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.