Abstract

Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson’s disease, Lewy body disease and Alzheimer’s disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson’s disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the limitations of these tests used and the sample sizes, olfactory dysfunction appears to be associated with the inability to identify odors reliably and consistently, not with the loss of an ability to identify specific odors. Irreproducibility in odor identification appears to be a non-disease-specific, general feature of olfactory dysfunction that is accelerated or accentuated in neurodegenerative disease. It may reflect a fundamental organizational principle of the olfactory system, which is more “error-prone” than other sensory systems.

Highlights

  • Olfactory dysfunction is seen in normal aging [1] and diverse diseases including diabetes [2] sleep apnea [3], and the autoimmune disease myasthenia gravis [4]. It is a common non-motor manifestation in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, spinocerebellar ataxia and corticobasal degeneration, as well as in frontotemporal dementia (FTD), which is characterized by behavioral, language, and cognitive manifestations, and the form of FTD linked to chromosome 17 in which parkinsonism is prominent, FTDP-17 [5,6,7,8,9,10,11,12]

  • The pallido-ponto-nigral-degeneration kindred (PPND) family is among the largest FTDP-17 kindreds with 57 manifesting carriers (MCs)

  • To characterize the salient features of olfactory dysfunction associated with MAPT mutations that have different clinical, molecular and neuropathological consequences [19,20,21,22,23,24,25], we evaluated University of Pennsylvania Smell Identification Test (UPSIT) from MCs and nonmanifesting carriers (NMCs) in FTDP-17 kindreds carrying the p.N279K or p.P301L MAPT mutations

Read more

Summary

Introduction

Olfactory dysfunction is seen in normal aging [1] and diverse diseases including diabetes [2] sleep apnea [3], and the autoimmune disease myasthenia gravis [4] It is a common non-motor manifestation in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, spinocerebellar ataxia and corticobasal degeneration, as well as in frontotemporal dementia (FTD), which is characterized by behavioral, language, and cognitive manifestations, and the form of FTD linked to chromosome 17 in which parkinsonism is prominent, FTDP-17 [5,6,7,8,9,10,11,12]. In addition to defining an understanding of the salient characteristics of olfactory dysfunction relevant to its function as a biomarker, such studies have the potential to offer insights into the process of olfaction itself

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.