Abstract
Resonance-assisted hydrogen bond (RAHB) theory was studied in some substituted pyrimidines in which encompass O–H⋯Y unit (Y= O and S). Alteration of substituents (R 1, R2, R3 = H, C2H, C2F) on pyrimidine ring changes properties of electron charge density at this ring and influences indirectly on strength of intramolecular hydrogen bond (IHB) interactions in the mentioned structures. Then, IHB energies were estimated using cis-trans method (CTM), related rotamers method (RRM), Espinosa’ method (EM), and a viewpoint based on properties of electron charge densities at ring critical point (RCP) of RAHB ring. Moreover, the estimated IHB energies with these methods were compared with those obtained using modified Espinosa’ method (MEM), Iogansen’s relationship, and chemical shift-based method to find more consistent method with the proposed viewpoint based on RCP characteristics. The linear correlations between the all estimated IHB energies and some hydrogen bonding descriptors such as geometrical, spectroscopic, topological, and molecular orbital factors were examined. Results indicated that the IHB energies that obtained by way of MEM and Iogansen’s relationship have better correlations with hydrogen bonding descriptors. Also, there are good consistencies between results of these two methods with viewpoint based on properties of RCPs. Therefore, IHB energies can suitably estimate using properties of RCPs in heterocyclic molecular systems especially in cases that rotation around C–C/CC bonds makes additional interactions in isomers and influences on accuracy of calculated IHB energies using approaches such as CTM and RRM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.