Abstract

In this study long-term wind data obtained from high-resolution hindcast simulations is used to analytically assess offshore wind power potential in the Aegean and Ionian Seas and provide wind climate and wind power potential characteristics at selected locations, where offshore wind farms are at the concept/planning phase. After ensuring the good model performance through detailed validation against buoy measurements, offshore wind speed and wind direction at 10 m above sea level are statistically analyzed on the annual and seasonal time scale. The spatial distribution of the mean wind speed and wind direction are provided in the appropriate time scales, along with the mean annual and the inter-annual variability; these statistical quantities are useful in the offshore wind energy sector as regards the preliminary identification of favorable sites for exploitation of offshore wind energy. Moreover, the offshore wind power potential and its variability are also estimated at 80 m height above sea level. The obtained results reveal that there are specific areas in the central and the eastern Aegean Sea that combine intense annual winds with low variability; the annual offshore wind power potential in these areas reach values close to 900 W/m2, suggesting that a detailed assessment of offshore wind energy would be worth noticing and could lead in attractive investments. Furthermore, as a rough estimate of the availability factor, the equiprobable contours of the event [4 m/s ≤ wind speed ≤ 25 m/s] are also estimated and presented. The selected lower and upper bounds of wind speed correspond to typical cut-in and cut-out wind speed thresholds, respectively, for commercial offshore wind turbines. Finally, for seven offshore wind farms that are at the concept/planning phase the main wind climate and wind power density characteristics are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.