Abstract

To evaluate the intraocular differences in optical coherence tomography (OCT)-based macular curvature index (MCI) among children with anisomyopia and to investigate the relationship between MCI and the macular microvasculature. Fifty-two schoolchildren with anisometropia > 2.00 D were enrolled and underwent comprehensive examinations including cycloplegic refraction, axial length (AL), and swept source OCT/OCT angiography. OCT-based MCIs were determined from horizontal and vertical B-scans by a customized curve fitting model in MATLAB R2022 at 1-mm-, 3-mm-, and 6-mm-diameter circles at fovea. Characteristics and topographic variation of MCI was analyzed, and the relationships with microvascularity and its associated factors were investigated. MCI achieved high reliability and repeatability. There were overall larger MCIs in the more myopic eyes than the less myopic eyes in 1-mm-, 3-mm-, and 6-mm-diameter circles at fovea (all p < 0.001). For the topographic variation, horizontal MCI was significantly greater than vertical MCI (all p < 0.001), and was the largest in 6-mm circle, followed by 3-mm and 1-mm circles. Stronger correlation of horizontal MCI with myopic severity than vertical MCI was found. Partial Pearson's correlation found MCI was negatively associated with deep capillary plexus (DCP) vessel density (p = 0.016). Eyes with a higher MCI in a 6-mm circle were more likely to have longer AL (p < 0.001), lower DCP vessel density (p = 0.037), and thinner choroidal thickness (ChT) (p = 0.045). Larger MCI was found in the more myopic eyes of children with anisomyopia and was significantly associated with smaller DCP density, suggesting that MCI was an important indicator of myopia-related retinal microvascularity change, and it could be a valuable metric for myopia assessment in children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call