Abstract

Three-dimensional quantitative coronary angiography (3D QCA) has been encouraged by the increasing need to better assess vessel dimensions and geometry for interventional purposes. A novel 3D QCA system based on biplane X-ray angiograms is presented in this paper. By correcting for the isocenter offset and by improving the epipolar constraint for corresponding two angiographic projections, accurate and robust reconstruction of the vessel centerline is achieved and the reproducibility of its applications, e.g., the assessments of obstruction length and optimal viewing angle, is guaranteed. The accuracy and variability in assessing the obstruction length and optimal bifurcation viewing angle were investigated by using phantom experiments. The segment length assessed by 3D QCA correlated well with the true wire segment length (r 2 = 0.999) and the accuracy and precision were 0.04 ± 0.25 mm (P < 0.01). 3D QCA slightly underestimated the rotation angle (difference: −1.5° ± 3.6°, P < 0.01), while no significant difference was observed for the angulation angle (difference: −0.2° ± 2.4°, P = 0.54). In conclusion, the new 3D QCA approach allows highly accurate and precise assessments of obstruction length and optimal viewing angle from X-ray angiography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.