Abstract

This paper presents a numerical plane Finite Element (FE) model for use in simulating the behaviour of different types of Near Surface Mounted (NSM) Fibre Reinforced Plastic (FRP) strengthening systems for concrete elements. Based on a nonlinear bond law for simulating the behaviour of the FRP reinforcement-adhesive-concrete interface, the model employs an interface element between the NSM FRP reinforcement and the concrete. The results of two different experimental programs, both dealing with ‘bond tests’ but with distinct set-ups, are briefly summarised and analysed. The main objective of this research is to assess the values of the parameters that define the nonlinear bond laws for each type of FRP reinforcement tested. This assessment was accomplished by inverse analysis, fitting numerically the pullout load–displacement curves that were experimentally recorded. The effect of bond length on different types of NSM FRP reinforcement is assessed. Finally, the bond behaviour in the transverse plane is examined too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.