Abstract

Increasing drought incidence and infertile soils require the improvement of maize for nitrogen use efficiency (NUE) under drought conditions. The objectives were to assess tolerance and genetic effects of Algerian populations under no-nitrogen and water stress. We evaluated a diallel among six Algerian maize populations under no-nitrogen vs. 120 kg/ha N fertilization and drought vs. control. Variability was significant among populations and their crosses for NUE under drought. Additive genetic effects could be capitalized using the populations BAH and MST, with high grain nitrogen utilization efficiency (NUtE). The most promising crosses were SHH × AOR with no-nitrogen supply under both water regimes for NUtE, AOR × IGS, under water stress for partial factor productivity (PFP), and well-watered conditions with nitrogen supply for protein content; AOR × IZM for agronomic nitrogen use efficiency (AE) under water stress; and AOR × BAH for grain nutrient utilization efficiency (NUtE) under well-watered conditions with nitrogen. These parents could be promising for developing drought-tolerant or/and low nitrogen hybrids to improve these traits. Maximum heterosis could be exploited using those populations and crosses. Reciprocal recurrent selection could be used to take advantage of additive and non-additive gene effects found based on estimations of genetic parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call