Abstract

The assessment of near-surface air pollutants has been done at an urban site, Varanasi, in the central Indo-Gangetic Basin (IGB) during July 2014 to June 2018. The various pollutants, such as particulate matters of diameter less than 2.5 μm (PM2.5) and less than 10 μm (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) were obtained from the Central Pollution Control Board (CPCB). The annual mean mass concentrations of PM10, PM2.5, SO2, NO2 and O3 were 239 ± 128, 123 ± 89, 17.5 ± 9.6, 52 ± 35 and 30 ± 14 μg m−3, respectively. The concentrations of PM10, PM2.5 and NO2 were found to be higher than their National Ambient Air Quality Standards (NAAQS) by a factor of 4, 3.1 and 1.3, respectively; however, SO2 and O3 were always well within their standard limits. Seasonally, all the pollutants, except ozone were found to be the highest during the postmonsoon and winter seasons. The sources of pollutants have been widely characterized at this site and in general over the IGB. Further, an attempt has been made, for the first time, to elucidate the possible transport pathways of the measured pollutants, especially PM2.5 to downwind of the station using concentration weight trajectory (CWT) analyses with the forward air mass trajectories. The results show significant potential for transport of PM2.5 (~ 65%) from the IGB to downwind over the northern Bay of Bengal region, with more pronounced during the winter season (~ 95%). These results underline the importance of IGB pollution outflow towards downwind continental and marine regions, which can have significant climatic impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.