Abstract
The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites.
Highlights
IntroductionThe assessment of population exposures due to indoor radiation is very important and knowledge of the concentrations of natural radionuclides in construction materials is required 1 .Construction materials are derived from both natural sources (e.g., rock and soil) and waste products (e.g., phosphogypsum, alum shale, coal fly ash, oil shale ash, some rare minerals, certain slags, etc.) and from industry (e.g., power plants, phosphate fertilizer and oil industry) products
The assessment of population exposures due to indoor radiation is very important and knowledge of the concentrations of natural radionuclides in construction materials is required 1 .Construction materials are derived from both natural sources and waste products and from industry products
The natural radioactivity was measured in eight types of cements produced in Slovak cement plants and in five types of composites made from the cement type of CEM I, which is included in study
Summary
The assessment of population exposures due to indoor radiation is very important and knowledge of the concentrations of natural radionuclides in construction materials is required 1 .Construction materials are derived from both natural sources (e.g., rock and soil) and waste products (e.g., phosphogypsum, alum shale, coal fly ash, oil shale ash, some rare minerals, certain slags, etc.) and from industry (e.g., power plants, phosphate fertilizer and oil industry) products. The assessment of population exposures due to indoor radiation is very important and knowledge of the concentrations of natural radionuclides in construction materials is required 1. Knowledge of basic radiological parameters such as radioactive contents and attenuation coefficients in building materials is important in the assessment of possible radiation exposure of the population as most people spend about 80% of their life inside houses and offices. This knowledge is essential for the development of standards and guidelines for the use of these materials 7
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.